首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 数学分析
Questions in category: 数学分析 (Mathematical Analysis).

[Mei,2nd,Ex1.1] 找一个多项式 $P(x)$, 使得当 $k$ 为任意正整数时均有 $P(k+1)-P(k)=k^2$. 利用它求 $\sum\limits_{k=1}^{n}k^2$.

Posted by haifeng on 2023-12-31 13:34:29 last update 2023-12-31 14:07:50 | Answers (1)


找一个多项式 $P(x)$, 使得当 $k$ 为任意正整数时均有 $P(k+1)-P(k)=k^2$. 利用它求 $\sum\limits_{k=1}^{n}k^2$.

 

 

尝试:

\[
(k+\frac{1}{2})^3-(k-\frac{1}{2})^3=\bigl[k^3+3k^2\cdot\frac{1}{2}+3k\cdot\frac{1}{4}+\frac{1}{8}\bigr]-\bigl[k^3-3k^2\cdot\frac{1}{2}+3k\cdot\frac{1}{4}-\frac{1}{8}\bigr]=3k^2+\frac{1}{4}.
\]

注: 猜不一定能猜出来, 还是用待定系数法吧.

 


题目来自[1] 习题1.1, P.3

[1] 梅加强 编著 《数学分析》第二版